

MIXED - PRECISION BLOCK QR DECOMPOSITION ON GPU

STUDENTS: Jaidon Lybbert, Fulin Li, Mike Pao, Alice Lin, Shashank Shivashankar

Targets

Motivation

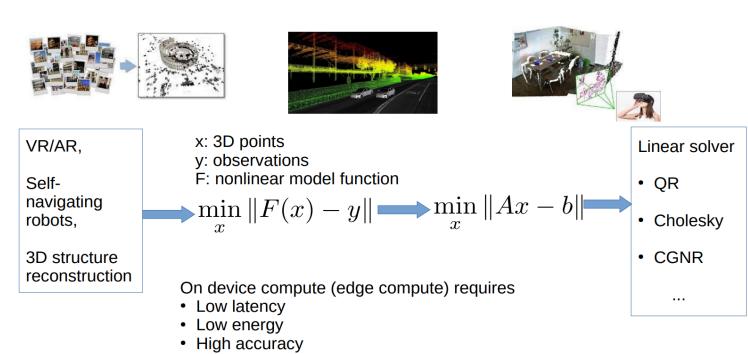
General QR Decomposition

A = QR

Our project aims to optimize QR decomposition, which factorizes a matrix into an orthogonal matrix (Q) and an upper triangular matrix (R), by developing efficient algorithms and techniques to improve its computational efficiency and

Application

QR decomposition is crucial for various applications in linear algebra and numerical computation.



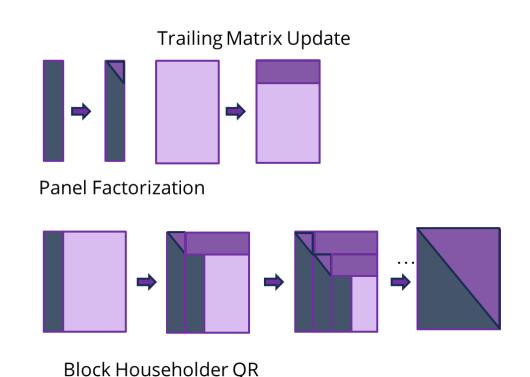
Software Design

To address this challenge, our team implements several techniques to accelerate the QR decomposition process.

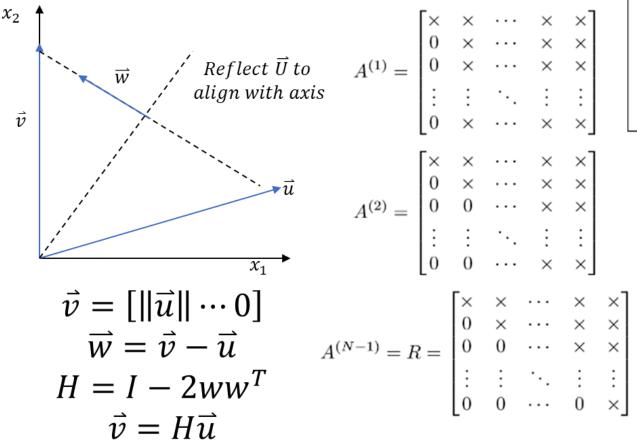
Block QR

precision.

Split the input matrix into smaller block matrices and perform QR decomposition on each block.

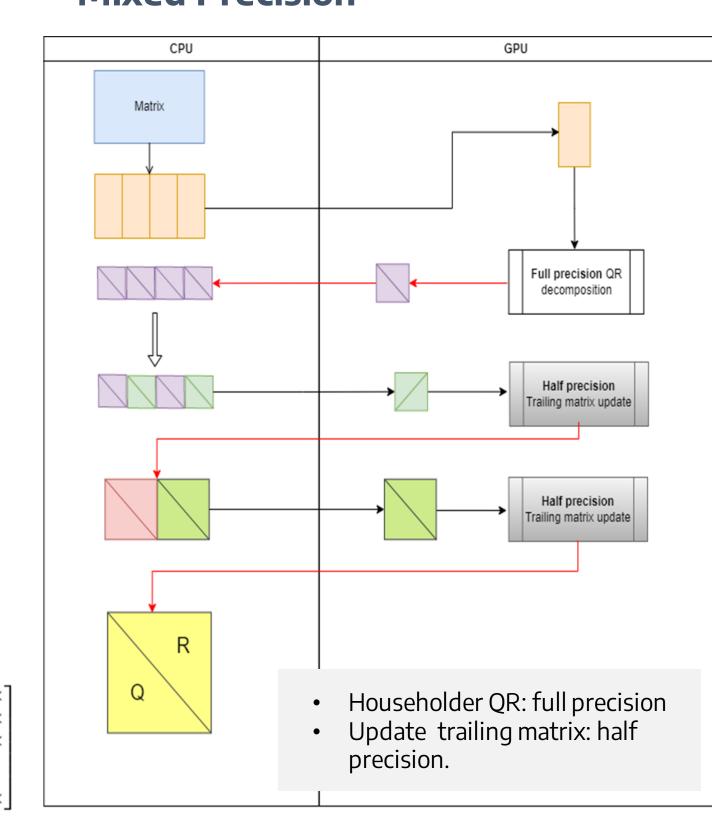


Householder QR



•lterate over columns -Compute householder matrix to zero column below diagonal -Update matrix A by A = HA•After iterating over all columns A = R

Mixed Precision



WY Transformation

Combine multiple householder transformations into a single matrix via the WY-representation of matrix products before doing the matrix

 $Q \in R^{M \times M} = \mathbf{Q}_1 \mathbf{Q}_2 \cdots \mathbf{Q}_j \cdots \mathbf{Q}_n$ where $Q_j = I_m - \beta_j w_j w_j^T$ and the factors β_i , w_i are stored as

 $V \in R^{M \times n} = \left[w_1 w_2 \cdots w_j \cdots w_n \right]$ $B \in R^n = \left[\beta_1 \beta_2 \cdots \beta_j \cdots \beta_n \right]$

the W and Y factors such that $Q = I_m$ – WY^T can be caculated from V, and B.

Requirements

- version of mixed precision QR using GPU.
- GPU's half precision data type for the matrix multiplications and single precision for
- ✓ The computing accuracy and speed to be higher than that of a naive implementation on an
- ✓ Integration into an Open-Source Package.

Hardware Constraints

- ✓ Implement a fast and correct
- ✓ Implementation should use the
- x86 CPU architecture.
- remaining operations.

- **NVIDIA RTX 2080** # of SMs 46
- 1024 Threads/SM Blocks/SM TC FMA dimension 16x16x16
- TC / SM SMEM 64KB

4 * 64kB

Algorithm

1: for k = 1 to n do

 $v_k = sign(u_1)||u||_2 e_1 + u$

 $A_{k:m,k:n} = A_{k:m,k:n} - 2v_k(v_k^T A_{k:m,k:n})$

 $u = A_{k:m,k}$

4: $v_k = v_k / ||v_k||_2$

3: for j = 2 to r do

5: W = [W|z]

6: $Y = [Y|\mathbf{w}_j]$

7: end for

4: $z = \beta_j (I_m - WY^T) \mathbf{w}_j$

6: end for

2: $W = \beta_1 \mathbf{w}_1$

Software Dependencies

CUDA Toolkit:

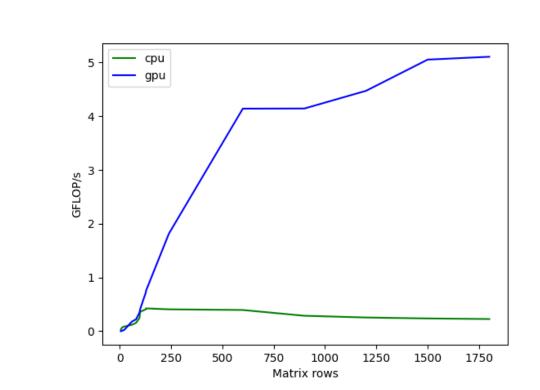
- Version: CUDA Toolkit 9.1 or higher - Provides development tools and libraries for GPU programming
- NVIDIA GPU Driver: - Required for NVIDIA RTX 2080 hardware compatibility

Error criteria

 $||QR - A|| \le m \cdot 2^{-23} ||A||$ $||Q^H Q - I|| \leq m \cdot 2^{-23}$ $||L|| \leq m \cdot 2^{-23}$

* L: the trapezoidal submatrix below the main diagonal of R

By utilizing GPU parallel computing, we can perform several tasks at once, leading to significant speedup compared to traditional sequential CPU processing.



Input Matrix A: Random Float

https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets

Matrix **Matrix Sizes: Various Sizes**

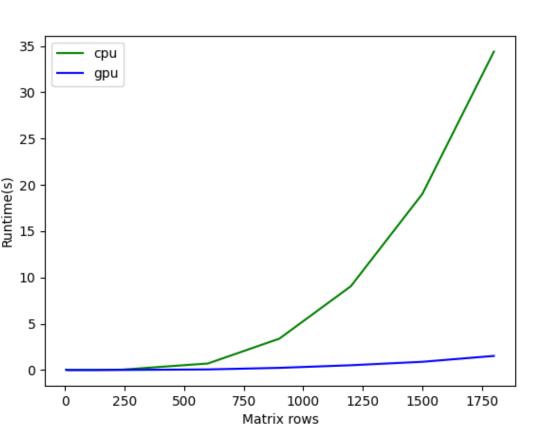


Figure 1: Runtimes of QR decomposition

Figure 2: Sustained performance of QR decomposition

Conclusion

Performance results

- By implementing the block QR decomposition in parallel on a GPU, we saw a speedup of over 10x compared to the sequential CPU implementation for large matrices, meeting our success criteria for execution time
- Our performance bottleneck is in the construction of matrix Q, which takes **about 80%** of the execution time, this can be accelerated on the **GPU**

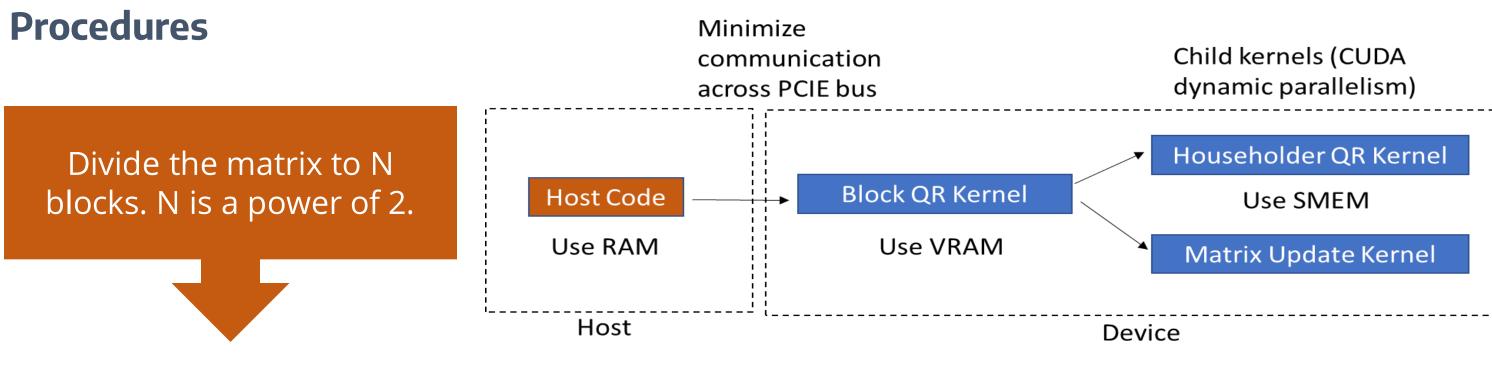
Future Work, References, and Acknowledgments

- Implement tiled QR to enhance the parallelism and performance of the QR decomposition process.
- Investigate and incorporate any other relevant advancements or optimizations in the field to enhance the overall algorithm.

References

- Zhang, S., Baharlouei, E., & Wu, P. (2020). High Accuracy Matrix Computations on Neural Engines: A Study of QR Factorization and its Applications. Proceedings of the 29th International Symposium on High-Performance Parallel and Distributed Computing, 17– 28. https://doi.org/10.1145/3369583.3392685 | PDF
- Bouwmeester, H., Mathias Jacquelin, Langou, J., & Yves, R. (2011). Tiled QR factorization algorithms. arXiv.org. https://arxiv.org/pdf/1104.4475.pdf

CUDA programming



Send every block to the GPU core, apply full precision Householder QR in every block.

computing in multiple GPU cores.

Parallel

Combine the panel Q matrices from each block into a single matrix Q using the **WY transformation**.

Get all QR deposition of every block, then recursively

update the trailing matrix. (Requires large amounts of computation)

To enhance efficiency, half precision is used to accelerate the process.

Algorithm 3 Block Householder QR Decomposition 1: $Q = I_m$ 2: $\lambda = 1$ 3: k = 0

Algorithm 1 Calculate A = QR using Householder reflections

Algorithm 2 Calculate W, Y from the factored form of Q: V and B

4: while $\lambda \leq n$ do 5: $\tau \leftarrow min(\lambda + r - 1, n)$ 6: k = k + 1

7: $A_{\lambda:m,\lambda:\tau} \leftarrow Householder_qr(A_{\lambda:m,\lambda:\tau})$ 8: $W_k, Y_k \leftarrow WY_transform(V_k)$ 9: $A_{\lambda:m,\tau+1:n} = (I - W_k Y_k^T)^T A_{\lambda:m,\tau+1:n}$

10: $Q_{:,\lambda:m} = Q_{:,\lambda:m}(I - W_k Y_k^T)$ 11: $\lambda = \tau + 1$ 12: end while

ADVISORS: TONG QIN, NATHAN KUTZ **SPONSORS: AMAZON LAB 126**